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PART I

DATA FUSION DEFINITION
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Definition

Many fusion methods exist in different scientific fields. In
particular, data fusion blends information from several sources to
provide more consistent and efficient results (Zhang, 2010)

This can be achieved through a data integration system that
combines data from different sources (Lenzerini, 2002)
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PART II

NASS ACREAGE REPORT
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USDA NASS acreage report

USDA NASS publishes state and county level estimates of planted
acreage by combining several sources of information

NASS publishes its acreage estimates at the state level several
times during the year:

1. Prospective Planting (end of March)

2. Acreage (end of June)

3. Crop Production (monthly from August to December)
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NASS questionnaire

I June Area Survey

I June 1 reference date

I Two-week data collection

I Respondents also report
intentions (‘to be planted’)

Intentions may change...
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Heavy rains in 2019 affected planting activities
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Effect on reported estimates
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Data solutions to improve early estimates

To inform acreage models NASS uses

I Survey data

I USDA Farm Service Agency (FSA) administrative data

I Remote sensing data (spectral reflectance)

and has recently started to investigate the use of

I Temperature and precipitation data (PRISM)

I Soil moisture (Crop-CASMA)

I Grain price basis data (GeoGrain)

I Crop rotation patterns based on NASS Cropland Data Layer (CDL)
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Modeling acreage with remote sensing data

Remote sensing technology provides a variety of data to assess the
status of the agriculture

Walker and Sigman (1984) developed a statistical model to predict
planted acreage at the county level when survey and satellite data
are both available

More recent challenges arise from

I Land-use and crop identification

I Non-parametric modeling

I Data processing practices
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PART III

PROCESSING

DATA SOURCES
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A new way to provide early season estimates
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Remotely sensed images

Satellites provide data on visible light, near-infrared reflectance,
surface temperature, soil moisture, and other radiometric
measurements

I Data collection and spectrum encoding
I Preprocessed by national and international space agencies
I Further processing by private organizations

I Spatial resolution
I Overlaying, snapping and re-projection
I Masking and clipping
I Sharpening

I Temporal resolution
I Dependent on number of satellite acquisitions and orbits
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Example of remotely sensed images (true colors)
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NASS CDL in December

JSM 2020 – Section on Extreme Machine Learning Methods and Applications – Luca Sartore 17

mailto:lsartore@niss.org


Challenges of image fusion before June Acreage Report
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Early Season CDL (ESCDL)

It has the potential to assess changes in planting intentions and
drive the estimates towards more precise results

I Historical data are used for training
I Input variables

1. Crop rotation patterns (based the CDL)
2. Remote sensing images from LANDSAT8 spectral bands

within a time frame from March to mid-June

I Output

1. Crop classification

I Tree based models (Breiman et al., 1984) have been used to
classify fields in Google Earth Engine (GEE)

I Validation performed with FSA ground reference data
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Example of ESCDL produced in GEE
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Fusing survey data and cropland classification results
The current fusion method is a small area approach developed by Walker
and Sigman (1984)

Ŷs = Ns

[
ȳs + β̂s(X̄s − x̄s)

]
Ŷs total acreage estimates of stratum s

Ns number of units in stratum s

ȳs sample mean from the survey data in stratum s

β̂s robust regression adjustment

X̄s population mean of stratum s from the CDL

x̄s mean of stratum s from the CDL over sampled areas

The acreage estimates are obtained as the sum of estimated acreages
over the strata
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PART IV

CASE STUDY
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Illinois pilot study

Illinois is a major corn and soybean producing state

The March Agricultural Survey provides acreage forecasts at the
state level, which are based on surveyed farming intentions

In June, NASS conducts a survey and reports planted acreage
estimates for each state in the nation

The Illinois pilot study is intended to identify the best statistical
practice to provide early acreage estimates by combining survey
and remote sensing data
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ESCDL overall accuracies

ESCDL produced in 2017 by fusing data

I historical crop rotation patterns

I remotely sensed spectral reflectance

Accuracies are computed by comparing the ESCDL with FSA
ground reference data

Unfiltered Filtered
ESCDL May 81.96 84.04
ESCDL June 82.88 84.80
NASS CDL 89.00 N/A
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Estimate accuracy by fusing ESCDL and survey data
Estimates can be produced by regressing ESCDL field acreages with June
Area Survey record level data (Walker and Sigman, 1984; Battese et al.,
1988; Mueller and Seffrin, 2006).
Accuracies are computed as a relative difference with respect to the
official NASS acreage estimates at the end of the year

Accuracy of IL planted acreage for corn

Year June Area Fusion
2016 -5.28 % -1.80 %
2017 -4.17 % 0.08 %

Accuracy of IL planted acreage for soybeans

Year June Area Fusion
2016 -2.99 % 0.24 %
2017 -2.54 % 3.45 %
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PART V

CONCLUDING REMARKS
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Conclusion

I Identifying crop types at the field level is quite challenging
before the crop has been planted and emerged

I The use of historical crop rotation patterns identified by the
CDL has been beneficial in providing more accurate
classification results at the field level

I Economic and extreme weather events have not been fully
understood in the planting decision process, and the use of
other data sources is part of this current research effort

I Preliminary analyses show the potential of data fusion in
improving the accuracy of early season estimates by
combining both survey and remote sensing data
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